
Ali Ebnenasir
Computer Science Department

Michigan Technological University
Michigan, USA

Designing Run-Time
Fault-Tolerance Using Dynamic

Updates

ICSE SEAMS 2007

Motivation
• It is difficult to anticipate and prevent all

types of faults
• Inevitably, unanticipated faults will be

detected after program deployment, and …
• programs may not possess the necessary

functionalities to tolerate unanticipated
faults!

How do we design systems that obtain
necessary fault-tolerance functionalities at

run-time?

Design Complexity

• A major challenge is to design mechanisms
that ensure a system
– acquires necessary fault-tolerance

functionalities at run-time under certain
correctness requirements, and

– tolerates faults while obtaining fault-tolerance
functionalities.

Contributions

• We present a formal framework for
1. defining run-time fault-tolerance

• I.e., dynamic (run-time) replacement of the controlling
software of an autonomous system with its fault-
tolerant version in reaction to the occurrence of faults.

2. automated design of run-time fault-tolerance

Perturbation
boundary

Proposed Solution

Set of
normal

states of
the

running
program

Set of normal
states of its
fault-tolerant

version
(designed
offline after
detecting

faults) Fault-triggered
dynamic update

Automatic
Design

Problem Formulation

Programs and Specifications
• Program p: tuple < Vp , δp>

– Vp is a finite set of variables; finite state space (denoted Sp)
– δp ⊆ Sp × Sp denotes the set of program transitions (s, s’)

• State predicate X ⊆ Sp
• Closure of a state predicate X in a program p

– ∀(s, s’):(s, s’) ∈ δp : (s ∈ X ⇒ s’ ∈ X)
• Specification [Alpern and Schneider 1985]:

– Safety: something bad never happens; modeled as a set of bad
transitions B ⊆ Sp × Sp

• E.g., integer variable t is not increased by more than 2 units in each
transition

– Liveness: something good will eventually occur; modeled as a set L
of infinite sequences of states

• E.g., X leads-to Y, if X holds then Y will eventually hold.
• Invariant: a state predicate I that captures the set of normal

states
– I is closed in p
– From I all computations of p satisfy its specification

B. Alpern and F. B. Schneider. "Defining liveness". Information Processing Letters, 21:181–
185, 1985.

Union of Programs

• p1 = < X1 , δ1> and p2 = < Y2 , δ2>, where X1 ∩ Y2 = φ
– State space Su: constructed by all possible valuations of

variables of X1 ∪ Y2

– Image of a state s ∈ Sp1: a set of states in Su (denoted s↑Su)
such that for each xi ∈ X1 , xi(s) = xi (simg), where simg ∈(s↑Su)

– Image of a transition (s, s’) ∈ δ1 : a set of transitions (simg,
s’img) ∈ Su × Su , denoted δ1 ↑ Su , such that,

1. for each xi ∈ X1 , xi(s) = xi(simg) and xi(s’) = xi(s’img)
2. for each yj∈ Y2 , yj(simg) = yj(s’img)

– Likewise, we define (δ2 ↑ Su)

• The union of p1 and p2:

pu = < X1 ∪ Y2 , δu>, where δu = (δ1 ↑ Su) ∪ (δ2 ↑ Su)

Union of Programs: Example

• Consider p1 = < {x} , δ1> and p2 = < {y} , δ2>,
where x and y are Boolean variables

• Image of a state <x = false> includes the
following states in Su

<x =false, y=false >
<x =false, y=true >

• Image of a transition <x=false> → <x=true> in
δ1 includes the following transitions in Su × Su

<x=false, y=false > → <x=true, y=false >
<x=false, y=true > → <x=true, y=true >

Faults and Fault-Span
• For a program p = < Vp , δp>, a fault-type f

is defined as f ⊆ Sp × Sp

• Fault-Span: f-span of p is a set of states
reachable from the invariant of p by δp ∪ f

Invp s1s0 snsn-1

fProgramFaultSafety-violatingLegend:

Sub Fault-Span
• Sub f-span: set of states outside the

invariant that are reachable from the
invariant of p by only f transitions

Invp s1s0 snsn-1

f

Levels of Fault-Tolerance

• Level of fault-tolerance:
– the extent to which safety and liveness specifications are

satisfied in the presence of faults

• Three levels [Arora and Gouda 1992]:
1.In the presence of faults,

• A failsafe program satisfies safety of specification

• A nonmasking program eventually recovers to invariant
• A masking program

– eventually recovers to invariant, and
– guarantees safety during recovery

2.In the absence of faults, satisfies safety & liveness
specifications

Anish Arora, Mohamed G. Gouda, "Closure and Convergence: A Foundation of Fault-Tolerant Computing".
IEEE Trans. Software Eng. 19(11): 1015-1027 (1993)

Fault-Tolerance Against Anticipated Faults

14

Designing Failsafe Fault-Tolerance

• Failsafe fault-tolerance
– Safety specification will never be violated

• E.g., boiler tank will not overflow even if one of the sensors is
corrupted.

• Requirements of failsafe fault-tolerance
– Identify and resolve states

• from where faults directly violate safety, called offending states
• outside the invariant reachable by faults from where the program

itself may violate safety, called risky states

Invariant

State space

f
systemFaultSafety-violatingLegend: f f

Ok .deadlock

× ×

×

15

Designing Nonmasking Fault-Tolerance

• Nonmasking fault-tolerance
– Recovers to its invariant when faults stop occurring

• E.g., if the level of fluid is above MAX then it will eventually go below MAX
and above MIN

• Requirements of nonmasking fault-tolerance
– Identify and resolve

• Non-progress cycles
• Deadlocked states

Invariant

State space

fsystemFaultSafety-violatingLegend: f

.deadlock

Run-Time Fault-Tolerance Against
Unanticipated Faults

Challenges

• If we do not have knowledge about the
behavior of faults, then how can we design
failsafe/nonmasking/ masking fault-tolerance
beforehand so that at run-time we get the
desired behaviors?

• Questions:
– How do we identify offending/risky states?
– How do we identify reachable non-progress

cycles and deadlock states?

Run-Time Fault-Tolerance
• Proposed Design principle:

A running fault-intolerant program is eventually replaced
with its fault-tolerant version after the detection of

unanticipated faults

• After the detection of an unanticipated fault-type, a
fault-type is formulated based on the effect of faults

• Subsequently, we
– Automatically synthesize

1. a fault-tolerant version of the running fault-intolerant program
(already solved in our previous work)

2. a program that is responsible for run-time replacement of the
intolerant program with its tolerant version, called the fault-
triggered update program

Problem Statement

• Given
– a fault-intolerant program po = < Vo , δo>,
– an invariant Io of po ,
– its specification spec,
– a fault-type f,
– sub f-span SFSo of po from Io,
– a program pn = < Vn , δn> with an invariant In, that is a

failsafe/nonmasking/masking fault-tolerant version of po

• Identify a program p = <Vo ∪ Vn , δ> in the state space Su
of the union of po and pn , such that
1. p satisfies the safety of spec (safeness),
2. p satisfies “(SFSo ↑ Su) leads-to (In ↑ Su)” (progress), and
3. no transition in δ starts in the images of Io and In, and ends in the

image of Io (interference-freedom).

Synthesizing the Update Program

Invariant
of the

running
fault-

intolerant
program

Invariant of
the fault-
tolerant
program

Soundness and Completeness Results

• Soundness Theorem:
– The synthesized update program meets the

requirements of the problem statement

• Completeness Theorem:
– If our algorithm fails then there is no solution under

the constraints of the problem statement.

Completeness theorem gives us an impossibility
test for the design of fault-tolerant adaptations

Defining Fault-Tolerant Updates

Fault-Tolerant Dynamic Updates

• Failsafe dynamic update
– Meets safeness in the presence of faults
– May violate progress

• Nonmasking dynamic update
– Meets progress in the presence of faults
– May violate safeness

• Masking dynamic update
– Meets both safeness and progress in the

presence of faults
• Interference-freedom must be met in

failsafe/nonmasking/masking updates

Related Work
1. Dijkstra’s predicate transformers

– Calculate the weakest predicate
2. Dynamic program update

– Focus on upgrading a program (or part of it) at
run-time with less emphasis on dependability
issues

3. Model-driven development of adaptation
– Mostly manual design of adaptation

4. Invariant lattice for adaptive distributed
programs
– A method for verifying adaptations

Our approach has been inspired by all above
approaches

Conclusions

• Defined run-time fault-tolerance using
dynamic program updates

• Formulated the problem of designing run-time
fault-tolerance

• Presented a sound and complete algorithms
for automatic synthesis of fault-triggered
updates (respectively, adaptations)

• Defined three levels of fault-tolerant dynamic
updates (respectively, adaptations)

