Designing Run-Time Fault-Tolerance Using Dynamic Updates

ICSE SEAMS 2007

Ali Ebnenasir Computer Science Department Michigan Technological University Michigan, USA

Motivation

- It is difficult to anticipate and prevent all types of faults
- Inevitably, unanticipated faults will be detected after program deployment, and ...
- programs may not possess the necessary functionalities to tolerate unanticipated faults!

How do we design systems that obtain necessary fault-tolerance functionalities at run-time?

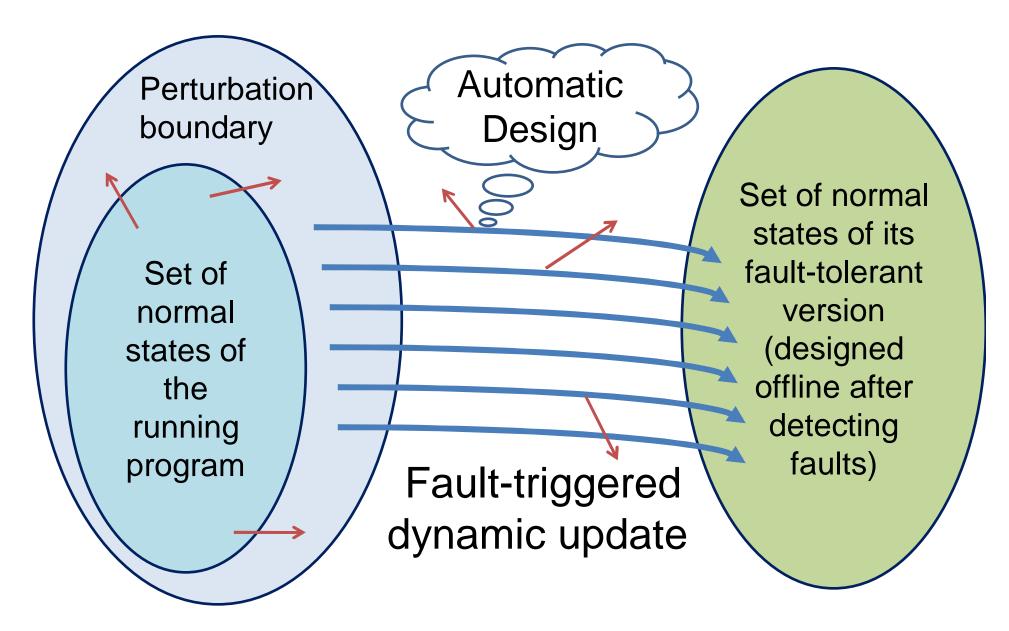
Design Complexity

- A major challenge is to design mechanisms that ensure a system
 - acquires necessary *fault-tolerance* functionalities at run-time under certain correctness requirements, and
 - tolerates faults while obtaining fault-tolerance functionalities.

Contributions

- We present a formal framework for
 - 1. defining run-time fault-tolerance
 - I.e., dynamic (run-time) replacement of the controlling software of an autonomous system with its fault-tolerant version in reaction to the occurrence of faults.
 - 2. automated design of run-time fault-tolerance

Proposed Solution



Problem Formulation

Programs and Specifications

- <u>Program</u> p: tuple $< V_p$, $\delta_p >$
 - $-V_p$ is a finite set of variables; finite state space (denoted S_p)
 - $-\delta_{p} \subseteq S_{p} \times S_{p}$ denotes the set of program transitions (s, s')
- <u>State predicate $X \subseteq S_p$ </u>
- <u>Closure</u> of a state predicate X in a program p

 $- \hspace{0.1in} \forall (s, \hspace{0.1in} s') {:} (s, \hspace{0.1in} s') \in \hspace{0.1in} \delta_{\hspace{-.1in} p} \hspace{0.1in} \text{:} \hspace{0.1in} (s \in \hspace{0.1in} X \Longrightarrow s' \in \hspace{0.1in} X)$

- Specification [Alpern and Schneider 1985]:
 - <u>Safety</u>: something bad never happens; modeled as a set of bad transitions $\mathfrak{B} \subseteq S_p \times S_p$
 - E.g., integer variable *t* is not increased by more than 2 units in each transition
 - <u>Liveness</u>: something good will eventually occur; modeled as a set \pounds of infinite sequences of states
 - E.g., X *leads-to* Y, if X holds then Y will eventually hold.
- <u>Invariant</u>: a state predicate *§* that captures the set of normal states
 - *§* is closed in p
 - From § all computations of p satisfy its specification
- B. Alpern and F. B. Schneider. "**Defining liveness**". Information Processing Letters, 21:181– 185, 1985.

Union of Programs

- $p_1 =$ < X_1 , $\delta_1 \text{>}$ and $p_2 =$ < Y_2 , $\delta_2 \text{>},$ where $X_1 \cap Y_2 = \phi$
 - <u>State space</u> S_u : constructed by all possible valuations of variables of $X_1 \cup Y_2$
 - $\begin{array}{l} \underline{Image \ of \ a \ state} \ s \in \ S_{p1} : \ a \ set \ of \ states \ in \ S_u \ (denoted \ s \uparrow S_u) \\ such \ that \ for \ each \ x_i \in \ X_1 \ , \ x_i(s) = x_i \ (s_{img}), \ where \ s_{img} \in (s \uparrow S_u) \end{array}$
 - $\begin{array}{l} \underline{Image \ of \ a \ transition} \ (s, \ s') \in \ \delta_1 : a \ set \ of \ transitions \ (s_{img}, \ s'_{img}) \in \ S_u \times S_u \ , \ denoted \ \ \delta_1 \uparrow S_u \ , \ such \ that, \end{array}$
 - 1. for each $x_i \in X_1$, $x_i(s) = x_i(s_{img})$ and $x_i(s') = x_i(s'_{img})$
 - 2. for each $y_j \in Y_2$, $y_j(s_{img}) = y_j(s'_{img})$
 - Likewise, we define $(\delta_2 \uparrow S_u)$
- The <u>union</u> of p_1 and p_2 :

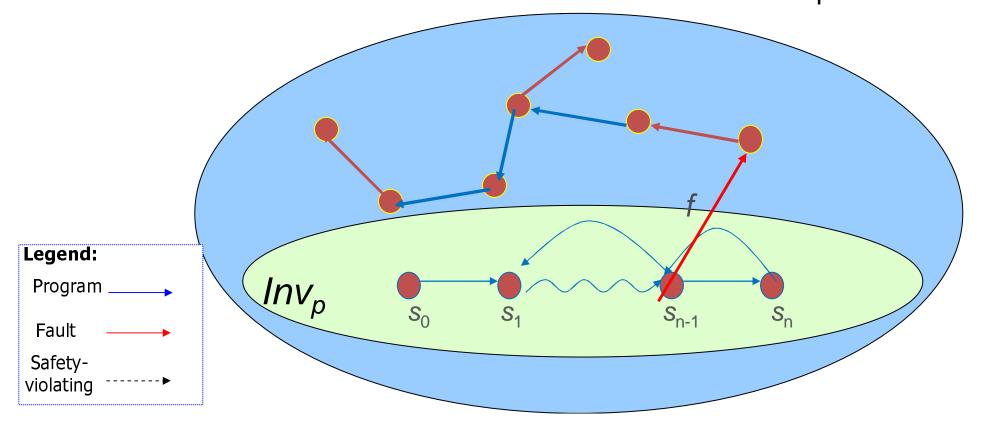
 $p_u = \langle X_1 \cup Y_2 \rangle$, $\delta_u \rangle$, where $\delta_u = (\delta_1 \uparrow S_u) \cup (\delta_2 \uparrow S_u)$

Union of Programs: Example

- Consider $p_1 = \langle x \rangle$, $\delta_1 \rangle$ and $p_2 = \langle y \rangle$, $\delta_2 \rangle$, where x and y are Boolean variables
- Image of a state <x = false> includes the following states in S_u
 <x =false, y=false >
 <x =false, y=true >
- Image of a transition $<x=false> \rightarrow <x=true>$ in δ_1 includes the following transitions in $S_u \times S_u$ $<x=false, y=false> \rightarrow <x=true, y=false>$ $<x=false, y=true> \rightarrow <x=true, y=true>$

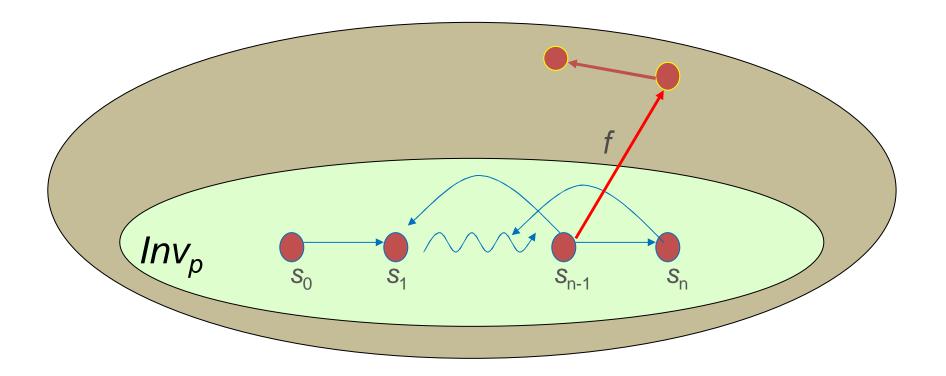
Faults and Fault-Span

- For a program $p = \langle V_p, \delta_p \rangle$, a <u>fault-type f</u> is defined as $f \subseteq S_p \times S_p$
- <u>Fault-Span</u>: *f-span* of p is a set of states reachable from the invariant of p by $\delta_p \cup f$



Sub Fault-Span

 <u>Sub f-span</u>: set of states outside the invariant that are reachable from the invariant of p by only f transitions



Levels of Fault-Tolerance

• Level of fault-tolerance:

- the extent to which safety and liveness specifications are satisfied in the presence of faults
- Three levels [Arora and Gouda 1992]:
 - 1. In the presence of faults,
 - A failsafe program satisfies safety of specification
 - A *nonmasking* program eventually recovers to invariant
 - A masking program
 - eventually recovers to invariant, and
 - guarantees safety during recovery

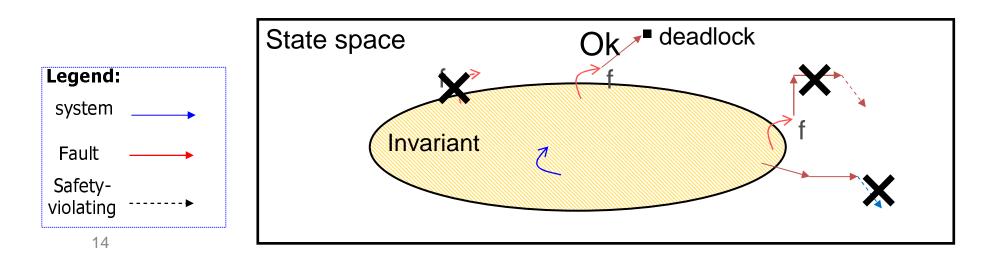
2. In the absence of faults, satisfies safety & liveness *specifications*

Anish Arora, Mohamed G. Gouda, "Closure and Convergence: A Foundation of Fault-Tolerant Computing". IEEE Trans. Software Eng. 19(11): 1015-1027 (1993)

Fault-Tolerance Against Anticipated Faults

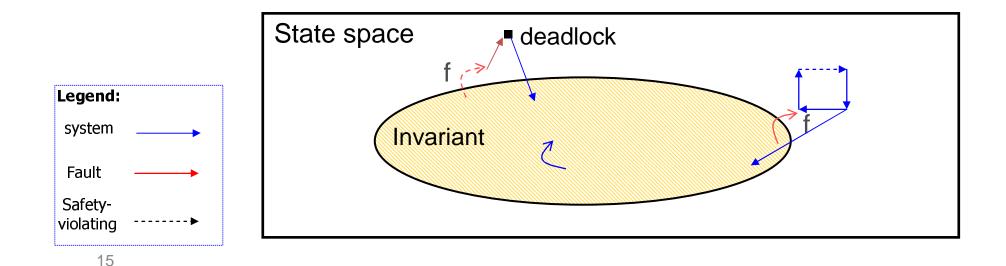
Designing Failsafe Fault-Tolerance

- Failsafe fault-tolerance
 - Safety specification will never be violated
 - E.g., boiler tank will not overflow even if one of the sensors is corrupted.
- Requirements of failsafe fault-tolerance
 - Identify and resolve states
 - from where faults directly violate safety, called *offending states*
 - outside the invariant reachable by faults from where the program itself may violate safety, called <u>risky states</u>



Designing Nonmasking Fault-Tolerance

- Nonmasking fault-tolerance
 - Recovers to its invariant when faults stop occurring
 - E.g., if the level of fluid is above MAX then it will eventually go below MAX and above MIN
- Requirements of nonmasking fault-tolerance
 - Identify and resolve
 - Non-progress cycles
 - Deadlocked states



Run-Time Fault-Tolerance Against Unanticipated Faults

Challenges

- If we do not have knowledge about the behavior of faults, then how can we design failsafe/nonmasking/ masking fault-tolerance beforehand so that at run-time we get the desired behaviors?
- Questions:
 - How do we identify offending/risky states?
 - How do we identify reachable non-progress cycles and deadlock states?

Run-Time Fault-Tolerance

• Proposed <u>Design</u> principle:

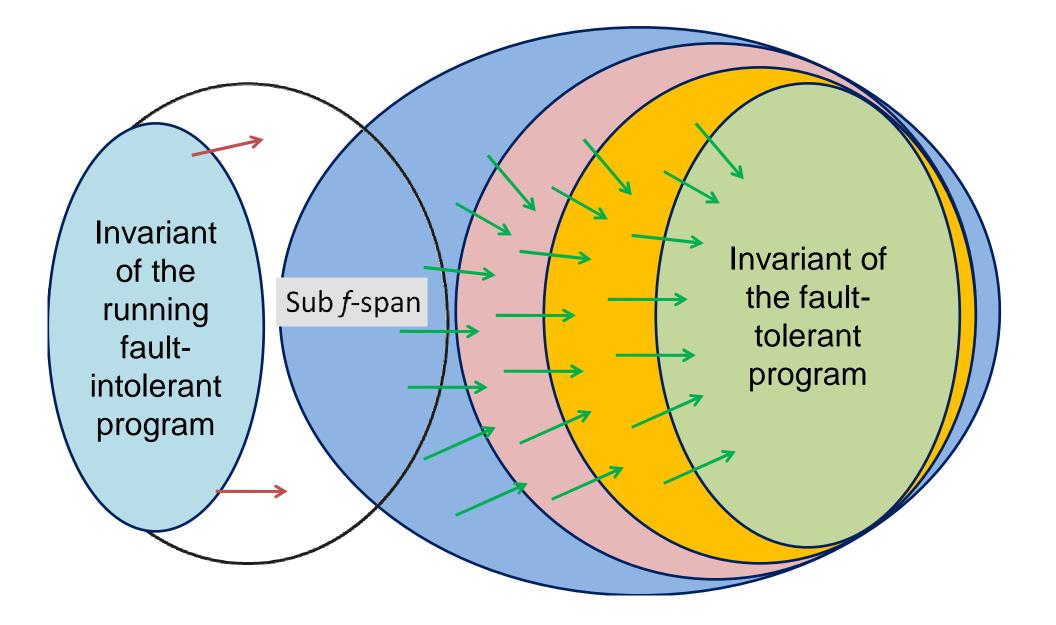
A running fault-intolerant program is eventually <u>replaced</u> with its fault-tolerant version <u>after the detection</u> of unanticipated faults

- After the detection of an unanticipated fault-type, a fault-type is formulated based on the effect of faults
- Subsequently, we
 - Automatically synthesize
 - 1. a fault-tolerant version of the running fault-intolerant program (already solved in our previous work)
 - 2. a program that is responsible for run-time replacement of the intolerant program with its tolerant version, called the <u>fault-</u><u>triggered update program</u>

Problem Statement

- Given
 - a fault-intolerant program p_o = < V_o , δ_o >,
 - an invariant \mathfrak{G}_{o} of \boldsymbol{p}_{o} ,
 - its specification spec,
 - a fault-type f,
 - sub *f*-span SFS_o of p_o from \mathscr{G}_o ,
 - a program $p_n = \langle V_n, \delta_n \rangle$ with an invariant \mathscr{G}_n , that is a failsafe/nonmasking/masking fault-tolerant version of p_o
- Identify a program $p = \langle V_o \cup V_n \rangle$, $\delta >$ in the state space S_u of the union of p_o and p_n , such that
 - 1. p satisfies the safety of spec (safeness),
 - 2. p satisfies "(SFS_o \uparrow S_u) leads-to ($\mathfrak{S}_n \uparrow$ S_u)" (**progress**), and
 - 3. no transition in δ starts in the images of \mathscr{G}_{o} and \mathscr{G}_{n} , and ends in the image of \mathscr{G}_{o} (*interference-freedom*).

Synthesizing the Update Program



Soundness and Completeness Results

- Soundness Theorem:
 - The synthesized update program meets the requirements of the problem statement
- Completeness Theorem:
 - If our algorithm fails then there is no solution under the constraints of the problem statement.

Completeness theorem gives us an *impossibility test* for the design of fault-tolerant adaptations

Defining Fault-Tolerant Updates

Fault-Tolerant Dynamic Updates

- Failsafe dynamic update
 - Meets safeness in the presence of faults
 - May violate progress
- Nonmasking dynamic update
 - Meets progress in the presence of faults
 - May violate safeness
- Masking dynamic update
 - Meets both safeness and progress in the presence of faults
- Interference-freedom must be met in failsafe/nonmasking/masking updates

Related Work

- 1. Dijkstra's predicate transformers
 - Calculate the weakest predicate
- 2. Dynamic program update
 - Focus on upgrading a program (or part of it) at run-time with less emphasis on dependability issues
- 3. Model-driven development of adaptation
 - Mostly manual design of adaptation
- 4. Invariant lattice for adaptive distributed programs
 - A method for verifying adaptations

Our approach has been inspired by all above approaches

Conclusions

- Defined run-time fault-tolerance using dynamic program updates
- Formulated the problem of designing run-time fault-tolerance
- Presented a sound and complete algorithms for automatic synthesis of fault-triggered updates (respectively, adaptations)
- Defined three levels of fault-tolerant dynamic updates (respectively, adaptations)