Model-Based Software Design and Adaptation

Hassan Gomaa and Mohamed Hussein Department of Information and Software Engineering George Mason University Fairfax, VA USA

hgomaa@gmu.edu

SEAMS 07 Minneapolis, May 2007

Copyright 2007 H. Gomaa

Dynamic Software Adaptation in Safety Critical Systems

- Safety Critical Systems
 - Highly available, Time critical
- Examples: air traffic control systems, spacecraft, automotive and aircraft control systems
- Challenge
 - Evolve the configuration of software application at run-time
 - Application must be operational during dynamic reconfiguration

Approach

- Most software product line research aimed at deriving different family members from
 - Product line architecture + implementation
 - At Configuration Time
 - NOT at Run Time
- Research approach
 - Model all configurations of safety critical system as product line members
 - Dynamically change from one family member to a different family member at Run Time
 - Develop Software Reconfiguration Patterns

Related Work

- Dynamic Reconfiguration Environments
 - Dynamically change a software configuration to a new configuration
 - Conic / Regis (Imperial College)
 - C2 (UC Irvine)
- Software Design and Architectural Patterns
 - Systematic reuse concepts for the design of applications
 - Gamma et al, Buschmann et al
- Reusable and Configurable Product Line Architectures
 - Product line design methods and tools (GMU EDLC/KBSEE)
 - KOALA (Philips)
 - FAST (Lucent)
 - PULSE/KOBRA (Fraunhofer)

Evolutionary Product Line Life Cycle - **Build, then Deploy**

Reconfigurable Evolutionary Product Line Life Cycle Reconfigure *after* Deployment

Software Architectural Patterns

- Software Architectural Patterns [Buschmann, Shaw]
 - Recurring architectures used in various software applications
- Goal: Design Software Architecture from
 - Software Architectural Patterns
- Architectural Structure Patterns
 - Address structure of major subsystems
- Architectural Communication Patterns
 - Reusable interaction sequences between components

Architectural Structure Patterns for Software Product Lines

- Layered patterns *very important for evolution*
 - Layers of Abstraction
 - Kernel
- Client/Server patterns
 - Basic Client/Server
 - Client/Broker/Server
 - Client/Agent/Server
- Control Patterns very important in RT Design
 - Centralized Control
 - Distributed Control
 - Hierarchical Control

Distributed Control Pattern

- Several control components
- Control is distributed among components
- Each component controls part of system
 - Receives sensor input from input components
 - Executes state machine
 - Controls external environment via output components
 - Communicates with other control components to provide overall control

Hierarchical Control Pattern

- Hierarchical Controller
 - Provides high level control
 - Sends commands to lower level control components

Architectural Communication Patterns for Software Product Lines

- Asynchronous communication patterns
- Synchronous communication patterns
- Very important for evolutionary design:
- Broker Communication Patterns
 - Broker forwarding
 - Broker handle
 - Discovery
- Group Communication Patterns
 - Broadcast
 - Subscription/notification

Subscription/Notification Pattern

- Subscription/Notification Pattern
 - Client subscribes to join group
 - Receives messages sent to all members of group

Software Reconfiguration Patterns

- Concept
 - Design software architecture based on software architectural patterns
 - For every software architectural pattern
 - Design a software reconfiguration pattern
- Reconfiguration Pattern
 - Specifies how a set of components cooperate to change the system configuration to a new configuration
- Characteristics of Reconfiguration Pattern
 - Reconfiguration state machine model
 - Component transitions to a state where it can be removed and replaced
 - Reconfiguration Collaboration model
 - Component interactions to change configuration

Reconfiguration State Machine Model

- Basic Model is based on Kramer/Magee
 - Component transitions to a state where it can be reconfigured
 - <u>Active State</u>: Component is operational
 - <u>Passive State</u>: Component
 - Is not participating in a transaction that it initiated
 - Still participating in other transactions
 - <u>Quiescent State</u>: Component
 - Idle
 - Not participating in any transactions
 - Ready to be removed from configuration

Reconfiguration State Machine

Software Reconfiguration Patterns

- Approach
 - Develop reconfiguration patterns for well-known software architectural patterns
 - Build software product line architectures using
 - Software architectural patterns
 - Software reconfiguration patterns
- Software Reconfiguration Patterns developed
 - Master-Slave pattern
 - Centralized Control pattern
 - Client / Server pattern
 - Decentralized Control pattern

Software Reconfiguration Patterns

- Master-Slave pattern
 - Master component can be replaced after receiving responses from all Slave components
 - Slave components can be replaced after Master is quiescent
- Centralized Control pattern
 - Removing or replacing any component in the system requires the Central Controller to be quiescent
- Client / Server pattern
 - Client can be added or removed after completing a transaction
 - Server can be removed or replaced after completing current transaction (s)
- Decentralized Control pattern

Decentralized Control Reconfiguration Pattern

- Decentralized Control components communicate with each other
 - Components must notify each other if going quiescent
 - Component can cease to communicate with neighbor but can continue with other processing

Reconfiguration State Machine

Component Reconfiguration State Machine

- New states to assist components in the reconfiguration process
- Needed for more complex component interactions
 - <u>Passivating State</u>: Component
 - Is disengaging itself from transactions
 - It is participating in
 - It has initiated
 - Is not initiating any new transactions
 - <u>Waiting For Acknowledgement State</u>:
 - Component has sent notification message (s) to disengage itself
 - To interconnected components

Reconfiguration State Machine

Dynamic Software Reconfiguration Framework

- Manages reconfiguration process
 - Different configurations are members of product line

Dynamic Software Reconfiguration

- Change Management Model
 - Reconfiguration steps to switch from old to new configurations
 - Drive components to
 - Full quiescence, e.g., to unlink and remove
 - Partial quiescence, e.g., to unlink
 - Change configuration commands
 - E.g., to replace component:
 - Quiesce, unlink, remove old component, insert new component, relink, restart
- Prototype developed using Rational Rose RT

Example of Dynamic Software Reconfiguration

• Reconfigurable factory automation SPL architecture

• <u>Uses</u>: Master-Slave, Client / Server, & Decentralized Control patterns

Conclusions

- Goal
 - Dynamically change from one SPL family member to a different family member at Run Time
- Research Approach
 - Software Reconfiguration Patterns
- Dynamic Software Reconfiguration framework
 - Rose RT environment
- Future work
 - Develop additional reconfiguration patterns
 - Investigate issues of pattern interaction
 - Investigate performance issues in dynamic reconfiguration
 - Investigate unplanned or unexpected dynamic recovery and reconfiguration issues