
Copyright 2007 H. Gomaa

ModelModel--Based Software Design and Based Software Design and
AdaptationAdaptation

Hassan Gomaa
and

Mohamed Hussein
Department of Information and Software Engineering

George Mason University
Fairfax, VA

USA

hgomaa@gmu.edu

SEAMS 07
Minneapolis, May 2007

2Copyright 2007 H. Gomaa

Dynamic Software Adaptation inDynamic Software Adaptation in
Safety Critical SystemsSafety Critical Systems

Safety Critical Systems
– Highly available, Time critical
Examples: air traffic control systems, spacecraft, automotive and
aircraft control systems
ChallengeChallenge
– Evolve the configuration of software application at run-time
– Application must be operational during dynamic

reconfiguration

3Copyright 2007 H. Gomaa

ApproachApproach

Most software product line research aimed at deriving
different family members from
– Product line architecture + implementation
– At Configuration Time
– NOT at Run Time

Research approach
– Model all configurations of safety critical system as

product line members
– Dynamically change from one family member to a

different family member at Run Time
– Develop Software Reconfiguration Patterns

4Copyright 2007 H. Gomaa

Related WorkRelated Work

Dynamic Reconfiguration Environments
– Dynamically change a software configuration to a new

configuration
• Conic / Regis (Imperial College)
• C2 (UC Irvine)

Software Design and Architectural Patterns
– Systematic reuse concepts for the design of applications

• Gamma et al, Buschmann et al
Reusable and Configurable Product Line Architectures
– Product line design methods and tools (GMU EDLC/KBSEE)
– KOALA (Philips)
– FAST (Lucent)
– PULSE/KOBRA (Fraunhofer)

5Copyright 2007 H. Gomaa

Evolutionary Product Line Life Cycle Evolutionary Product Line Life Cycle
-- Build, then DeployBuild, then Deploy

6Copyright 2007 H. Gomaa

Reconfigurable Evolutionary Product Line Life CycleReconfigurable Evolutionary Product Line Life Cycle
Reconfigure Reconfigure afterafter DeploymentDeployment

7Copyright 2007 H. Gomaa

Software Architectural PatternsSoftware Architectural Patterns

Software Architectural Patterns [Buschmann, Shaw]
– Recurring architectures used in various software

applications
Goal: Design Software Architecture from
– Software Architectural Patterns

Architectural Structure Patterns
– Address structure of major subsystems

Architectural Communication Patterns
– Reusable interaction sequences between components

8Copyright 2007 H. Gomaa

Architectural Structure PatternsArchitectural Structure Patterns
for Software Product Lines for Software Product Lines

Layered patterns very important for evolution
– Layers of Abstraction
– Kernel

Client/Server patterns
– Basic Client/Server
– Client/Broker/Server
– Client/Agent/Server

Control Patterns very important in RT Design
– Centralized Control
– Distributed Control
– Hierarchical Control

9Copyright 2007 H. Gomaa

Distributed Control PatternDistributed Control Pattern

Several control components
Control is distributed among components
Each component controls part of system
– Receives sensor input from input components
– Executes state machine
– Controls external environment via output components
– Communicates with other control components to

provide overall control

«control
component»
: Distributed
Controller

«control
component»
: Distributed
Controller

«control
component»
: Distributed
Controller

event event

event event
sensor
Input actuator

Output
sensor
Input

actuator
Output

sensor
Input

actuator
Output

«input
component»

»

: SensorNode

«input
component»

»

: SensorNode

«input
component»

»

: SensorNode

«output
component»

: ActuatorNode

«output
component»

: ActuatorNode

«output
component»

: ActuatorNode

10Copyright 2007 H. Gomaa

Hierarchical Control PatternHierarchical Control Pattern

Hierarchical Controller
– Provides high level control
– Sends commands to lower level control components

11Copyright 2007 H. Gomaa

Architectural Communication Patterns for Architectural Communication Patterns for
Software Product LinesSoftware Product Lines

Asynchronous communication patterns
Synchronous communication patterns

Very important for evolutionary design:

Broker Communication Patterns
– Broker forwarding
– Broker handle
– Discovery

Group Communication Patterns
– Broadcast
– Subscription/notification

Asynchronous message

Synchronous message

Response to synchronous message

Concurrent
component

12Copyright 2007 H. Gomaa

• Subscription/Notification Pattern
- Client subscribes to join group
- Receives messages sent to all members of group

Subscription/Notification Pattern

13Copyright 2007 H. Gomaa

SSoftware Reconfiguration Patternoftware Reconfiguration Patternss
Concept

Design software architecture based on software
architectural patterns
For every software architectural pattern

Design a software reconfiguration pattern
Reconfiguration Pattern

Specifies how a set of components cooperate to change
the system configuration to a new configuration

Characteristics of Reconfiguration Pattern
– Reconfiguration state machine model

Component transitions to a state where it can be
removed and replaced

– Reconfiguration Collaboration model
Component interactions to change configuration

14Copyright 2007 H. Gomaa

Reconfiguration State Machine ModelReconfiguration State Machine Model

Basic Model is based on Kramer/Magee
Component transitions to a state where it can be reconfigured

– Active State: Component is operational
– Passive State: Component

• Is not participating in a transaction that it initiated
• Still participating in other transactions

– Quiescent State: Component
• Idle
• Not participating in any transactions
• Ready to be removed from configuration

15Copyright 2007 H. Gomaa

Reconfiguration State MachineReconfiguration State Machine

16Copyright 2007 H. Gomaa

Software Reconfiguration PatternsSoftware Reconfiguration Patterns

Approach
– Develop reconfiguration patterns for well-known

software architectural patterns
– Build software product line architectures using

• Software architectural patterns
• Software reconfiguration patterns

Software Reconfiguration Patterns developed
– Master-Slave pattern
– Centralized Control pattern
– Client / Server pattern
– Decentralized Control pattern

17Copyright 2007 H. Gomaa

Software Reconfiguration PatternsSoftware Reconfiguration Patterns

Master-Slave pattern
– Master component can be replaced after receiving

responses from all Slave components
– Slave components can be replaced after Master is

quiescent
Centralized Control pattern
– Removing or replacing any component in the system

requires the Central Controller to be quiescent
Client / Server pattern
– Client can be added or removed after completing a

transaction
– Server can be removed or replaced after completing

current transaction (s)
Decentralized Control pattern

18Copyright 2007 H. Gomaa

Decentralized ControlDecentralized Control Reconfiguration Reconfiguration
PatternPattern

Decentralized Control components communicate with
each other
– Components must notify each other if going

quiescent
– Component can cease to communicate with

neighbor but can continue with other processing

19Copyright 2007 H. Gomaa

Reconfiguration State MachineReconfiguration State Machine

20Copyright 2007 H. Gomaa

Component Reconfiguration Component Reconfiguration State MachineState Machine

New states to assist components in the reconfiguration process
Needed for more complex component interactions
– Passivating State: Component

• Is disengaging itself from transactions
– It is participating in
– It has initiated

• Is not initiating any new transactions
– Waiting For Acknowledgement State:
– Component has sent notification message (s) to disengage itself

• To interconnected components

21Copyright 2007 H. Gomaa

Reconfiguration State Machine Reconfiguration State Machine

22Copyright 2007 H. Gomaa

Dynamic Software Dynamic Software Reconfiguration FrameworkReconfiguration Framework

Manages reconfiguration process
– Different configurations are members of product line

23Copyright 2007 H. Gomaa

Dynamic Software ReconfigurationDynamic Software Reconfiguration

Change Management Model
– Reconfiguration steps to switch from old to new

configurations
– Drive components to

– Full quiescence, e.g., to unlink and remove
– Partial quiescence, e.g., to unlink

– Change configuration commands
• E.g., to replace component:
• Quiesce, unlink, remove old component, insert new

component, relink, restart
Prototype developed using Rational Rose RT

24Copyright 2007 H. Gomaa

Example of Dynamic Software ReconfigurationExample of Dynamic Software Reconfiguration

• Reconfigurable factory automation SPL architecture
• Uses: Master-Slave, Client / Server, & Decentralized Control patterns

a) Before
reconfiguration

b) After reconfiguration

25Copyright 2007 H. Gomaa

ConclusionsConclusions
Goal
– Dynamically change from one SPL family member to a different

family member at Run Time
Research Approach
– Software Reconfiguration Patterns

• Dynamic Software Reconfiguration framework
– Rose RT environment

Future work
– Develop additional reconfiguration patterns
– Investigate issues of pattern interaction
– Investigate performance issues in dynamic reconfiguration
– Investigate unplanned or unexpected dynamic recovery and

reconfiguration issues

	Model-Based Software Design and Adaptation
	Dynamic Software Adaptation in�Safety Critical Systems
	Approach
	Related Work
	Evolutionary Product Line Life Cycle �- Build, then Deploy
	Reconfigurable Evolutionary Product Line Life Cycle�Reconfigure after Deployment
	Software Architectural Patterns
	Architectural Structure Patterns�for Software Product Lines
	Distributed Control Pattern
	Hierarchical Control Pattern
	Architectural Communication Patterns for Software Product Lines
	Software Reconfiguration Patterns
	Reconfiguration State Machine Model
	Reconfiguration State Machine
	Software Reconfiguration Patterns
	Software Reconfiguration Patterns
	Decentralized Control Reconfiguration Pattern
	Reconfiguration State Machine
	Component Reconfiguration State Machine
	Reconfiguration State Machine
	Dynamic Software Reconfiguration Framework
	Dynamic Software Reconfiguration
	Example of Dynamic Software Reconfiguration
	Conclusions

