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Outline

Problem statement
Reinforcement learning (RL) as a solution?

Background on RL

B Collaborative RL (CRL)

B Multiple policy RL

MPCRL: Challenges in applying CRL to
multiple policy optimization

Urban traffic control applications
Future work
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Optimization of Ubiguitous

'Computing Environments

[l Ubiquitous computing environments

Large-scale, distributed, decentralized, dynamic
No global view

Multiple goals — conflicting, change over time and
space

Multiple agents — cooperating to meet various goals

[1 Self-organizing techniques

Global behaviour emerges based on local decisions

B ACO, evolutionary computing, RL

However: typically single goal
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'Reinforcement Learning Approach

[0 Originally a single agent,
single (implicit) policy,
unsupervised learning
technique [2]

[0 Set of states, set of actions,
state transition function

O Reinforcement function,
Value function — feedback
given by the environment

[0 Learning the best action to
perform from each state

[0 Q-learning — maximize
expected long term reward
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Multiple Policy Reinforcement
Learning

[0 Two approaches:
B Combined state space:

[0 Reduce the joint state space and solve as single policy RL
[10]
B Separate state spaces but common action space:

[0 All suggested solutions evaluated and “the best”
compromise solution selected (centralized approach) [1]

[0 Greatest mass approach (or making sure chosen action is
optimal for at least one goal) [8]

[0 Choose an action suggested by the agent that will loose
the most long term reward if its optimal action is not
selected [1]

Minimum necessary performance w.r.t. one or more
objectives [9]

Make sure solution satisfies all objectives, if no such
solution then pick a random one [11]
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Collaborative Reinforcement
Learning (CRL)

[0 Multi-agent decentralized self-organizing optimization
technique [3]
B Collaborative feedback — exchange of feedback with
neighbouring agents
B Negative feedback — decays local agent’s memory of
actions/feedback

[0 Agents learn from the behaviour of other agents

advertise(Solution)

[0 Agents are homogenous T T
B Working together towards Agent Agent
a common system goal a(t) ay(t)
5(t+1) ' s(t+1)

Environment

r(t+1) ri{t+1)
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'‘Multiple Policy CRL

Single agent

Multiple agents

(collaboration,
decentralisation)

Collaborative

(optimise for
several goals at a
time)

Multiple policy
reinforcement
learning

Single policy Reinforcement | Reinforcement
Learning Learning
Multiple policies MPCRL?

-multiple goals
-multiple policy
-goals/policies change
over time

-heterogenous agents
-collaborating agents
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MPCRL: Research Questions
(1 of 2)

[0 Is RL suitable for multiple policy and multiple agent
optimization?

[0 State space

B Separate for each policy or combined? How to combine
policies of different and of same priorities? Group policies
by priorities?

B State space partitioning — relative or absolute? Does it
depend on policy type?

B Implications for deploying new policies

[0 Learning
B Separate for each policy or combined?
B How to learn for policies that are valid only occasionally?
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MPCRL: Research Questions
(2 of 2)

Heterogenous agents

B Should an agent have knowledge of the policies and
priorities of the policies that any agent it exchanges
feedback with is implementing?

Feedback
B Balancing single agent rewards with feedback from other
agents

B Agents should learn to sacrifice performance w.r.t their
local goals if other agents’ goals have higher priority

Implications on the learning process:
B Time to converge to solution
B Quality of solution
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Application area: Traffic

'Optimization

Large-scale decentralized system
Multiple policy optimization, conflicting goals, several levels,
e.g.:
B Global
[0 Maximize global traffic throughput or

[0 Minimize global cumulative waiting time for all vehicles in
the system

B Regional
[0 Prioritize incoming public transport vehicles
[0 Prioritize incoming emergency vehicles

[0 Deal with sudden increase of traffic in a given area (public
events)

B [|ocal

[0 Each intersection aiming to minimize waiting time for its
incoming vehicles
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'Reinforcement Learning in UTC

Wiering [5]

B decision at traffic node based on cars own estimates of time
gained by setting the light to green

B optimisation of travel time — single policy

Abdulhai [6]

B single, isolated intersection, decision based on queue length

B optimisation of travel time — single policy

Pendrith [4]

B all the agents updating single shared policy and calculate
global reward

B single policy, centralized
Cunningham, Cahill, Salkham
B CRL, single policy based on vehicle arrival rates at approaches
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Approach

Experimental

Dublin City Traffic Simulator
Collaborative reinforcement
learning framework

Multiple junctions

Multiple policies

O OO0 000

Currently:

B Several junctions

B Prioritize ambulance

B Minimize global waiting time
B Learn to prioritize ambulance
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Future work

[0 Observe how does following influence learning process

¢

State space partitioning
Combined/separate state spaces
Combined/separate learning
Actions differing between policies

Feedback content exchanged between agents —
downstream/upstream junctions

Policy priority and scope

Feedback between agents implementing different
policies

Sacrificing performance of the lower priority policies
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