ENGINEERING RESEARCH CENTRE

Multiple Policy Optimization using Collaborative Reinforcement Learning

Ivana Dusparic and Vinny Cahill

DISTRIBUTED SYSTEMS GROUP TRINITY COLLEGE DUBLIN

May 2007

- Problem statement
- □ Reinforcement learning (RL) as a solution?
- Background on RL
 - Collaborative RL (CRL)
 - Multiple policy RL
- MPCRL: Challenges in applying CRL to multiple policy optimization
- Urban traffic control applications
- Future work

Optimization of Ubiquitous Computing Environments

- Ubiquitous computing environments
 - Large-scale, distributed, decentralized, dynamic
 - No global view
 - Multiple goals conflicting, change over time and space
 - Multiple agents cooperating to meet various goals
- Self-organizing techniques
 - Global behaviour emerges based on local decisions
 - ACO, evolutionary computing, RL
 - However: typically single goal

Reinforcement Learning Approach

- Originally a single agent, single (implicit) policy, unsupervised learning technique [2]
- Set of states, set of actions, state transition function
- Reinforcement function,
 Value function feedback
 given by the environment
- Learning the best action to perform from each state
- Q-learning maximize expected long term reward

Multiple Policy Reinforcement Learning

Two approaches:

lero

- Combined state space:
 - Reduce the joint state space and solve as single policy RL [10]
- Separate state spaces but common action space:
 - All suggested solutions evaluated and "the best" compromise solution selected (centralized approach) [1]
 - □ Greatest mass approach (or making sure chosen action is optimal for at least one goal) [8]
 - Choose an action suggested by the agent that will loose the most long term reward if its optimal action is not selected [1]
 - Minimum necessary performance w.r.t. one or more objectives [9]
 - Make sure solution satisfies all objectives, if no such solution then pick a random one [11]

Collaborative Reinforcement Learning (CRL)

- Multi-agent decentralized self-organizing optimization technique [3]
 - Collaborative feedback exchange of feedback with neighbouring agents
 - Negative feedback decays local agent's memory of actions/feedback
- Agents learn from the behaviour of other agents
- □ Agents are homogenous
 - Working together towards a common system goal

lera

Multiple Policy CRL

	Single agent	<i>Multiple agents (collaboration, decentralisation)</i>
Single policy	Reinforcement Learning	Collaborative Reinforcement Learning
<i>Multiple policies (optimise for several goals at a time)</i>	Multiple policy reinforcement learning	MPCRL? -multiple goals -multiple policy -goals/policies change over time -heterogenous agents -collaborating agents

lero

MPCRL: Research Questions (1 of 2)

- Is RL suitable for multiple policy and multiple agent optimization?
- □ State space
 - Separate for each policy or combined? How to combine policies of different and of same priorities? Group policies by priorities?
 - State space partitioning relative or absolute? Does it depend on policy type?
 - Implications for deploying new policies
- □ Learning
 - Separate for each policy or combined?
 - How to learn for policies that are valid only occasionally?

MPCRL: Research Questions (2 of 2)

- Heterogenous agents
 - Should an agent have knowledge of the policies and priorities of the policies that any agent it exchanges feedback with is implementing?
- Feedback

lero

- Balancing single agent rewards with feedback from other agents
- Agents should learn to sacrifice performance w.r.t their local goals if other agents' goals have higher priority
- □ Implications on the learning process:
 - Time to converge to solution
 - Quality of solution

Application area: Traffic Optimization

- □ Large-scale decentralized system
- Multiple policy optimization, conflicting goals, several levels, e.g.:
 - Global
 - Maximize global traffic throughput or
 - Minimize global cumulative waiting time for all vehicles in the system
 - Regional
 - Prioritize incoming public transport vehicles
 - Prioritize incoming emergency vehicles
 - Deal with sudden increase of traffic in a given area (public events)
 - Local
 - Each intersection aiming to minimize waiting time for its incoming vehicles

Reinforcement Learning in UTC

□ Wiering [5]

- decision at traffic node based on cars own estimates of time gained by setting the light to green
- optimisation of travel time single policy
- Abdulhai [6]
 - single, isolated intersection, decision based on queue length
 - optimisation of travel time single policy
- Pendrith [4]
 - all the agents updating single shared policy and calculate global reward
 - single policy, centralized
- Cunningham, Cahill, Salkham
 - CRL, single policy based on vehicle arrival rates at approaches

Approach

- **Experimental**
- Dublin City Traffic Simulator
- Collaborative reinforcement learning framework
- Multiple junctions
- Multiple policies
- Currently:
 - Several junctions
 - Prioritize ambulance
 - Minimize global waiting time
 - Learn to prioritize ambulance

Future work

- □ Observe how does following influence learning process
 - State space partitioning
 - Combined/separate state spaces
 - Combined/separate learning
 - Actions differing between policies
 - Feedback content exchanged between agents downstream/upstream junctions
 - Policy priority and scope
 - Feedback between agents implementing different policies
 - Sacrificing performance of the lower priority policies

References

- [1] Humphrys, M. Action selection methods using reinforcement learning. In Mataric M. et al, editors, *From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behaviour*, 1996.
- [2] Richard S. Suton and Andrew G. Barto. *Reinforcement Learning: An Introduction.* A Bradford Book. The MIT Press, Cambridge, Massachusetts, 2002.
- [3] Dowling J., *The Decentralised Coordination of Self-Adaptive Components for Autonomic Distributed Systems.* PhD Thesis, Trinity College Dublin, 2005.
- [4] Pendrith M. et al. Distributed reinforcement learning for a traffic engineering application. AGENTS '00: Proceedings of the fourth international conference on Autonomous agents, 2000.
- [5] Wiering M. Multi-Agent Reinforcement Learning for Traffic Light Control. *Proc. 17th International Conf. on Machine Learning*. 2000
- [6] Abdulhai B. et al. Reinforcement Learning for the True Adaptive Traffic Signal Control. *Journal of Transportation Engineering*. 2003
- [7] Jim Dowling, Raymond Cunningham, Anthony Harrington, Eoin Curran, and Vinny Cahill. Emergent Consensus in Decentralised Systems Using Collaborative Reinforcement Learning, in *Post-Proceedings* of the workshop SELF-STAR: Self-* Properties in Complex Information Systems, Hot Topics in Computer Science, LNCS, 2005.
- [8] N. Sprague and D. Ballard. Multiple-goal reinfrocement learning with modular sarsa. In *International Joint Conference on Artificial Intelligence*, August 2003.
- [9] C.R. Shelton. Balancing multiple sources of reward in reinforcement learning. In NIPS 13, 2000.
- [10] H. Cuayáhuitl, S. Renals, O. Lemon and H. Shimodaira. Learning Multi-Goal Dialogue Strategies Using Reinforcement Learning With Reduced State-Action Spaces. *In Proc. of Interspeech-ICSLP* 2006.
- [11] C. E. Mariano and E. F. Morales. Distributed Reinforcement Learning for Multiple Objective Optimization Problems. In *Proceedings of the 2000 Congress on Evolutionary Computation* CEC00.
- [12] G. Stevenson, L. Coyle, S. Neely, S. Dobson and P. Nixon. ConStruct A Decentralised Context Infrastructure for Ubiquitous Computing Environments. In *Proceedings of the IT&T Annual Conference*. 2005.

lerc

THANK YOU!

Distributed Systems Group Trinity College Dublin Ireland www.dsg.cs.tcd.ie

Irish Software Engineering Research Centre www.lero.ie

