Food for Adaptive Thinking...

Working lunch Session Chair: Betty Cheng

Breakout groups

- Stimulate discussions
 - Learn about capabilities and needs from other disciplines
 - Learn more about the utility and limitations of your area
- Identify challenge problems
- Stimulate new research investigations

Breakout groups

1. Assurance

- Discussion Leaders: Rogerio and Jeff M.
- Structural, behavioral, NFR (security, fault tolerance)
- 2. Discipline-inspired adaptation
 - Discussion Leader: Betty
 - Biology, AI, control theory, robotics
- 3. Technology-enabled adaptation
 - Discussion Leaders: David G, Marin L.
 - (e.g., patterns, model-based development, process, architectural styles/frameworks, languages, etc.)
- 4. Application-driven adaptation
 - Discussion Leaders: Steve F., Hausi
 - (e.g., web, servers, grid computing, etc.)

Process

- Decide on a breakout group:
 - You work in the topic area OR
 - You want to learn about the area (bringing your expertise)
- Discussion leader(s) will select a table
- Identify a scribe for each table
- Each group will produce 1-3 slides
- Elected group member to present after lunch 5 minutes.

Breakout Product

- 1. Describe 3 key challenges for the area
- 2. What existing work can be leveraged?
- 3. Anticipated near-term results
- 4. Ideal long-term results

Discipline Inspired

The Betty Posse

Challenges

- Decision Making
- Knowledge Representation / Model
- Scope:
 - Global vs. Local
 - Centralized vs. Decentralized
- Common / Standard Evaluation

Near-term Solutions

- AI Techniques
- Decision Theory
- Multi-attribute Utility Theory
- Evolution

Ideal Solutions

- Automatic generation
 - goals
 - requirements
 - design models
 - code
- Clear mapping between artifacts (goals to requirements to models to code)

- Understanding the level of adaptations
 - code level, component level, system level
 - Tuning, structure change

- Multidimensional aspects of adaptability
 - Composition of different concerns
 - Perspective on performance, reliability
 - Solutions:
 - Domain specific approaches
 - Separation of concerns
 - Composition of aspects (utility function)

- What are the enabling technogies
 - SE tchnologies: architectures, AOP, languages, etc
 - Other domains technologies: AI learning, Biology, performance models, reliability models

- How to deal with expected/unexpected changes in the environment
 - Planning in advance for anticipated changes
 - Design the system accordingly
 - Solve the unexpected changes through evolution\

- Undoing an adaptation
 - Short-term
 - Application-specific approaches
 - Logging and compensating actions
 - Long-term
 - Integrate into requirements and check adaptation meets requirements

- Centralized vs distributed control
 - Short-term
 - Map out specific application scenarios
 - Ideal
 - Define spectrum of control models to match requirements

- Evolution of non-functional requirements
 - Short-term
 - Model variability of requirements
 - Ideal
 - Include variability into architecture

- Making legacy systems adaptive
 - Short-term
 - Wrapping
 - Long-term
 - SOA

- Effective and adaptive monitoring
 - Short-term
 - Facilities to control intensity
 - Long-term
 - Intelligent control

Assurances

- what are the differences for the provision of assurances:
 - traditional systems;
 - difficult to achieve in high assurance systems [Littlewood keynote];

» e.g., nuclear power stations;

- self-adaptive systems;
 - order of magnitude much higher;
 - e.g., run-time testing;
- what should be adapted? and why?

Assurances

- methodology for supporting selfadaptability;
 - design-time;
 - what needs to be modified?
 - arguments based on model checking, testing, code inspections, etc.
 - run-time;
 - what should be incorporated?
 - design of emergent behaviours:
 - » guarantees that the emergent
- domain specific solutions;
 - industry want guarantees on systems/solutions

Assurances - Challenges

- real-time constraints;
 - how to ensure end-to-end arguments;
- adaptive assurance;
 - how to generate assurances at run-time;
 - there is a difference between design-time and runtime assurances;
 - level of assurance defined on the goals of the self-adaptive system;
- oracle for assurances:
 - based on domain knowledge;